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ABSTRACT 

This paper examines methods of resampling for bootstrap from a survey sampling point of 
view. Given an observed sample of size n, resampling for bootstrap involves n repeated trials 
of simple random sampling with replacement. From the point of view of information content, 
it is well known that simple random sampling with replacement does not result in samples 
that are equally informative (see Pathak (1964)). This is due to different numbers of distinct 
observations occuring in different bootstrap samples. We propose an alternative scheme of 
sampling sequentially (with replacement each time) until k distinct original observations 
appear. In such a scheme, the bootstrap sample size becomes random as it varies from 
sample to sample, but each sample has exactly the same number of distinct observations. 
We show that the choice of k = (1 — r.-1 )??. ~ .632??. has some advantage, stemming from 
the observation made by Efron (1983) that the usual bootstrap samples are supported on 
approximately .632?? of the original data points. Using recent results on empirical processes, 
we show that main empirical characteristics of the sequential resampling bootstrap are 
asymptotically within the distance of order ~ n-3/4 of the corresponding characteristics of 
the usual bootstrap. 

Keywords and phrases: bootstrap, sequential resampling, information content, sampling viewpoint, 
asymptotic correctness, empirical measures, empirical processes, weak convergence, symmetrization, Pois- 
sonization, p-variation, quantiles 
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1. INTRODUCTION 

Let S = (X\,X-2,- ■ ■ .A"„) be a random sample from a distribution F, and 8(F) be a 
given parameter of interest. Let Fn denote the empirical distribution function based on S. 
and suppose that 8(Fn) is to be used as an estimator of 6(F). Then, for a large class of 
functions 0, Efron's bootstrap resampling method (1979. 1982) provides a robust method 
of evaluating the performance characteristics of 8(Fn), solely on the basis of information 
derived (through randomization) from the observed sample <S. As an illustrative example, 
consider the simple case of 

0(F) =   f xdF = p{F),     say. (1.1) 

Let 

a\F) = J(.r~fi.(F)j2dF (1.2) 

h,  =   - Y^ A', 
II ^-* 

/*„ = - >   A, (1.3) 

and 

al = -Y(X,-,ln)2 (1.4) 
n ^—' 

Then //„ = (t{F„) and a2, = a2(F„). Let 

n„ = v/7i(//.„ - ii)/cr„ (1.5) 

= (l,,(Fn)-ti(F))/v/aHFn) (1.6) 

The central limit theorem entails that the sampling distribution of II,, can be approximated 
by the standard normal distribution. On the other hand, the bootstrap method furnishes an 
alternative approach to estimating the sampling distribution of IIn (by repeated resampling 
of the observed sample S) as follows: 

Given the observed sample S, select a simple random sample with replacement (SRSWR.) 

of size 7;. from the observed sample S. Let S„ = (X\,... ,A„) denote a sample drawn from 

S in this fashion. Let F„ be the empirical distribution based on <5„. Let 

n„ = V^(ii(Fn)-ft{Fn))/yJ*HFn) 

= y/n-ißn - fi„)/a„,     say. (1.7) 

Then for large ??., the conditional distribution of ft,, given <S is close to that of II,,. Thus, 
one can replace the sampling distribution of IT,, by the conditional distribution of II„ given 
S. In practice, the conditional distribution of !!„ is estimated by the frequency distribution 



(ensemble) of IIn obtained by repeated resamplings of S by SRSWR a large number of 
times; the observed sampling distribution of II „ is referred to as the bootstrap distribution 
of n„. Thus for example, for large v, the quantiles from the bootstrap distribution of II,, 
can be used to set up a confidence interval for J.L based on the pivot II„. 

It is well known that owing to the with replacement nature of SRSWR. not all of the 
observations in bootstrap samples <S„, say, will be based on distinct observations from <5. 
In fact, the information content of <Sn, the set of distinct observations in Sn, is a random 
variable.  Let un denote the number of distinct observations in Sn.  Then it is easily seen 
that 

E(u„) = n[l-(l--)n] (1.8) 
77 

~n[l -r_l] 

~??(.G32). (1.9) 

Var(;y„) = Var(// - //„) 

- 77(1 --)" + n(n - 1)(1 - -)" - /r(l - -j2n (1.10) 
n n ii 

~ i>.(~{ + 11.(11 — l)c~'2 — n2c~2 

~7ie_l(l -f~l) 

~n(.368)(.632)~?i(.233) (1.11) 

so that 

<r(v„) ~ A82s/n. (1.12) 

In fact. ;/„ approaches a binomial distribution b(n.p) with p ~ .G32. This shows that in a 
bootstrap sample, approximately sixty percent of the information from the observed sample 
S is utilized while the rest of the forty percent of the data in it is simply randomization. 
Besides, the 2<7-limits for u» are approximately (.G32)?7±2(.482)v'» ^ (.032)7/ ± 07. There- 
fore in approximately 95% of resamplings, the essential supremum of vn can be as large 
as (.632)77 + y/rc, and the essential infimum as small as (.632)?; — sjn. Thus for 11= 100. 
this means that one can expect un to roughly vary in the range (53, 73). Viewed from a 
purely information content of the bootstrap samples, this variability is neither necessary nor 
desirable. As an alternative to a fixed size bootstrap samples, we examine in what follows 
the following sequential approach. 

2. A SEQUENTIAL RESAMPLING APPROACH 

To select a bootstrap sample, draw observations from <5 sequentially by SRSWR until 
there are (rn -\-\) 22 n(l — e~l) + 1 distinct observations in the observed bootstrap sample, 
the last observation in the bootstrap sample is discarded to ensure simplicity in technical 
details. Thus an observed bootstrap sample has the form: 

5/v=(A"1,A-2,...,A'/v) (2.1) 



in which Ä'i,... ,-Y/v has m « n(l — e   *) distinct observations from <S. 

The number of distinct observations in <S/v is precisely [n(l — e-1)]; it is no longer a 
random variable. It is worth noting that the size iV of the bootstrap sample is a random 
variable with E{N) ~ n. The pivot based on <S/v is 

flN = y/N(fi(FN)-n(Fn)) (2.2) 

in which F/v denotes the empirical distribution based on the bootstrap sample Sis;. Again 
for simplicity in the exposition, we assume that a2(F) = 1. Now for a comparative study 

of the pivot IT/v, based on the sequential resampling approach, versus U„, based on a 
bootstrap sample of fixed size n, it is necessary to estimate the order of magnitude of the 
random variable Ar. It is easily seen that N admits the following decomposition in terms of 
independent (geometric) random variables: 

N = I]+L + ... + Im (2.3) 

in which in = [n(l — c~1)] using the notation [■] to indicate the largest integer: I\ = 1. and 
for each k, 2 < k < in. 

p(h =j) = (i-—-)(—-y-' (2.4) 
■n n 

for j = 1.2,.... Therefore 

E(N) = n[- + -J— + ... + l——]. (2.5) 
??.      (n — 1) (n — rn + 1) 

It can be seen that 

E(iV)=nloR        "        +0(1) 
(n - m.) 

= n + ()(l) (2.G 

since rn = [n(l — r _1 )]. Similarly, it is easily seen that 

n(k-l) 
Var(JV) = V — (2.7) 

= n(e-l) + 0(l). (2.8) 

Thus 
E(N -n)2      {c- 1)      „, 1 

n2 n n1 + 0( —) (2.9) 

showing that {N/n) —+ 1 in probability. Further analysis similar to that of Mitra and Pathak 
(Mitra, S.K. and Pathak, P.K. [1984]) can be used to show that 

£(n/v-nn)2 ^ T.  /Var(iY) 
Var(nn)      -AV^^ (2-10) 

0(4=)- (2-n) 'n 



This implies that Ön and S/v are asymptotically equivalent. The preceding computations 
show that the sequential resampling plan introduced here, in addition to keeping the in- 
formation content of bootstrap samples constant, also preserves its asymptotic correctness. 
With this heuristic introduction to the sequential resampling scheme, we turn now to the 
question of mathematical justification of its validity with the main goal of showing that 
the sequential bootstrap and the usual one are at a distance 0(n~3/4), which is enough to 
justify its asymptotic first order correctness. 

Let T-2 be the set of probability distributions with finite second moment. We say that 
distributions {F„} converge in M-sense to F if and only if (a) F„ converges weakly to F 
and (b) f x2dFn converges to f x2dF. It is easily seen that this notion of convergence is 
induced by the following A/-metricJ on IV For each F, G in T-2, define the squared distance 
d2(F,G) between F and G as follows: 

(t1{F,G)=  .  inf      E(X-Y)2 (2.12) 
.v~/\ v~c/ 

in which the infimum is taken over all pairs of random variables (A", I") with given marginals 
F and G respectively (Mallows (1972)). 

Now let Y"i,... , }',„ be independent random variables with a common distribution G. Let 
(J('"> be the distribution of the standardized variable?: 

1    '" 
= yfiTi{-T(Yj-E(Yj))}. (2.13) 

in 

Then the following result holds: 

Lemma 2.1 (Mallows). 

d(G{'"\Hlm)) <d(G,H). (2.14) 

The proof of the validity of Efron's bootstrap based on resampling schemes of a preassigned 
size in can now be seen to be a. consequence of the following triangle inequality: 

rf(F^n).*) < r/(F7
(,rn).F(m)) + <7(F(m,,$) (2.15) 

<c/(F„,F) + r/(F(m).$). (2.16) 

(Note that F,,'"   here stands for the conditional distribution of the pivot II,,, (eq.(1.7)), and 
F'm' stands for the distribution of II,,, based on a sample of size m (eq.(1.5)).) 

In this inequality the convergence of d,( F('" ',<]>) to zero essentially follows from the central 
limit theorem: the convergence? of <7(F„,F) to zero is essentially a consequence of the fact 
that the sample mean converges in mean to the population mean (i.e. lim E{ [ xdFn — 
J xdF)'2 = 0). Despite the apparent simplicity of this proof, an added complication that 
arises in sequential resampling scheme is that the bootstrap sample size 'W is now a random 
variables; it is denoted by N. Lemma 2.1 is no longer directly applicable. Nevertheless the 
following extensions of Lemma 2.1 hold. 

'known also in the literature as a Wasserstein metric; see, e.g. Rachev (1984) 



Lemma 2.2. 

*2 

E{(y/N(flN - fin) - MßN - fin))2\S} < Ki - (2.17) 
n 

where s2 is the sample variance based on the initial sample and A"i is a universal constant. 

Lemma 2.3 

s2 
E[n(ßN - fin)2\S] < K-2 -f=. (2.18) 

\/n 

The proofs of these lemmas are based on techniques similar to those of Pathak (1964) and 
Mitra and Pathak (1984) (ef Lemma 3.1 in Mitra and Pathak). 

Lemmas 2.2 and 2.3 imply that the Mallows distance between vNfi^ and \Jn(in converges 
to zero. This then implies the asymptotic, correctness of \fNfi,^, and thus concludes the 
heuristic justification for the correctness of the sample sum for the sequential bootstrap. 

In the next section we examine the mathematical justification for the preceding heuristic 
discussion in some detail. 

3. MATHEMATICAL JUSTIFICATION: BOOTSTRAPPING EMPIRICAL 
MEASURES WITH A RANDOM SAMPLE SIZE 

Let (X.A,P) be a probability space, and let (£2, £,7) be the product of a countable 
number of copies of (X.A.P) and the unit interval with the Lebesgue measure. In what 
follows E denotes the expectation with respect to 7. Consider a sequence {A"„ : ;? > 1} of 
random elements defined on (12, £.7) as follows: 

-YnM=.T„ (3.1) 

in which Lü = {xy,.r>,... . u) € SI. Then {A"„ : 11 > 1} is a sequence of independent random 
elements with a common distribution P. Let P„ denote the empirical measure based on the 
sample (A'i,. . . . X„ ) from P. i.e.. 

P„:=n-1    Y,   A"-V.- <3-2) 

with 6X being the unit point mass at x € A". 

Now let {X„j : j > 1} be a. sequence of independent random elements with common 

distribution Pu; assume; that this sequence is defined on (fi.H.7) with E denoting the 
expectation with respect to 7. We refer to this sequence as a sequence of bootstrapped 
observations, or just a bootstrapped sequence. Given a number N > 1, let Pn,N denote the 

empirical measure based on the bootstrap sample (A"„ 1,... ,Xn N) of size JV); i.e., 

N~l E **,.,• (3-3^ n,N 

Ki<N 



We refer to it as a bootstrapped empirical measure of size N. 

In what follows we assume that N = Nn is a random variable defined on the space 
(17, E, 7) x (0, S,7) and takes only positive integer values. Thus we allow the size of the 
bootstrapped sample to be a random variable. The main object of this section is to show 
that if {N/n) converges to one in probability, then the bootstrapped empirical measure PnJv 

is at a distance of o{n~ll2) from the bootstrapped empirical measure Pn := Pn,n, so that 
all of the y/n - asymptotic results for the classical bootstrap carry over to the sequential 
bootstrap with a random sample size. To do so, we need to introduce a few preliminary 
results on limit theorems for general empirical processes (see Dudley (1984), Gine and Zinn 
(1986 and 1994) and Pollard (1984)). 

A general empirical process is denned as a random signed measure 

Z„ := y/Ti(Pn - P), n > 1, (3.4) 

on the measurable space1 (X,A). Given a measurable function / and a signed measure A 
on (X,A), let A(f) denote the integral / fdX. provided / |/|f/|A| < 00. It is convenient 
to consider the empirical process Z„ as a random function / —► Zu(j) defined on a class 
T C L-2(X; dP). The finite dimensional distributions of the sequence of random functions Z„ 
converge to the finite dimensional distributions of a Gaussian random function / —> G p(f) 
with mean zero and covariance function 

D{Gp(f),G,>(g)) = P(f(j) - P(f)PUj), f,9 € L2(X:dP). (3.5) 

Such a Gaussian random function is often called a P-Brownian bridge. We endow L-i{X: dP) 
with a metric f>p defined by 

P2
P(f,<j) : = D(Gp(f) - GP(fj),G,>(f) - GP{())) 

= P(f-!l)2-(P(f-!l))2. (3.C) 

Convergence of the sequence \Z„ : n > 1} to the limit Gp (now in functional sense) has 
been studied (see, for example. Pollard (1984)) in the space f°°(T) of all uniformly bounded 
functions on the class T with the norm 

PI,, := sup{|F(/)| : / <E F], Y € f°°(^). (3.7) 

Zn belongs to this space a.s. under the condition 

/ PAYßP(dx) =  f sup \f(x)\P(dx) < +00. (3.8) 

Let Ci>u{J-) be the subspace of all /^p-uniformly continuous and uniformly bounded functions 
on T. 

In the sequel, we use weak convergence of random functions in the space £°°(J-) in the 
Hoffman- J</>rgensen sense. Let (,"„ be a sequence of functions from 12 x T into R[, such that 
for all n > 1 

7*({w:||C»||^ = +oo}) = 0 (3.9) 



in which 7* denotes the outer measure induced by 7 (note the need for 7* since £„ is not 
necessarily a random element (measurable)). Then the sequence (,"n is said to converge 
weakly in £°°(.F) to a limit ( : Q x T i-+ .ft1 iff 

(a) 7*(K^C'6U(^)}) = 0: 
(b) for any bounded and || ■ ||^-continuous functional $ : f°°(^r) 1—► Rl, we have 

£*$((«) -► £$((,'), as n -► 00 

in which E* is the outer expectation induced by the expectation operator E. The main 
results of the classical theory of weak convergence of continuous processes hold for this 
extension as well; of particular interest is the following result: Let BL\{t:'00{J:)) be the set 
of all functional $ : f°(;F) ■-► P1 such that 

||*||oo:=     sup     |*(y)|<l 

and for all -1/1,1/2 € Coc'{Jr) 
|*(yi)-*(;y2)| < \\yi -1/2 ll^- 

Given two functions Q\,Qi : 12 x .F 1—> P.1, define the following distance between (1 and C2 : 

'MCi>G): =       «up       |£*$(C.)-£*$(C2)|. (3.10) 

Then a sequence {(*„ : 11 > 1} converges weakly in the space d.°°(T) to the limit C if and 
only if 

7*(K £CW•?-)}) = 0 

and 

lim r/7(C„,C) = 0. 
II—-TO 

A class .F C L-i{X\dP) is called P-pregaussian iff there is a version of P-Brownian bridge 
Gp such that 

7*({GP£CW.F)}) = (). 

This class is called P-Donsker iff the sequence of empirical processes Zn converges weakly 
in the space ^{T) to the P-Brownian bridge Gp. In this case we say thcit T G CLT(P). 
The following result is well known (Gine and Zinn (1986)). If T € CLT(P), then 

E*\\   Y, (*xi-P)\\T = 0{n{'2). (3.11) 
\<t<n 

It is also clear that T € CLT(P) iff T is P-pregaussian and 

d-f(Zn, Gp) —► 0    as n —► 00. 

In what follows, we use several well known inequalities for sums of independent random 
elements in Banach spaces. We assume that all random variables and elements in the 
following three lemmas are defined on a certain probability space {QQ,T,Q,Q). We denote 



10 

the corresponding expectation operator EQ. Let Bbea Banach space.  We start with the 
following symmetrization lemma (Gine and Zinn (1986)). 

Lemma 3.1 (Symmetrization lemma): Let {Yn : n > 1} be a sequence of independent 
and identically distributed random elements in B with finite first moment. Let {en : n > 1} 
be a Rademacher sequence (i.e., an i.i.d. sequence with Q{en = —1) = Q(e„ = 1) = 1/2) 
independent of {Yn : ??. > 1}. Then 

n n 

(*)    EQ\\Yt(Yi-EYi)\\<2EQ\\Y,£iYi\\ 
1= 1 != 1 

and 
n n 

(»)  EQ\\^c-,y;|| < 2EQ|| Jjr, -£Y;)||. 
i= I i= 1 

Lemma 3.2 (Contraction principle): Let {£„ : n > 1} and {;/„ : n > 1} be two i.i.d. 
sequences of symmetric random variables such that, for ("ach t > 0, 

Q({\vn\>t})<Q({\U\>t})- 

Then for each n > 1 and for all .rt, x2,... ,xn € B. 

n n 

EQWYs'h-^W^EQWYs^rW- 
I 1 

For a proof, see Ledoux and Talagrand (1991). 

Lemma 3.3 (Poissonization lemma): For each ?i > 1. let C|, ;•„ £ B: let {Ynj '■ 
1 < j < m} be m i.i.d. Z?-valued random elements with the distribution 

»-'E4' 
i=i 

Let {t; : i > 1} and {■rr'-[m/2n] : / > 1} respectively be a Rademacher sequence and a 
sequence of independent symmetrized Poisson random variables with parameters m/2u, 
l)oth independent of {Y„,j : 1 < j < in}. Then 

1 n in it 

—(l-e-^^Qll^^H KEQWj^ejYnJ <2EQ\\Y,^l~}*A\ (3-12) 
v- ;=i j-\ i=i 

(see Proposition 2.2 in Gine and Zinn (1990) and Lemma 4.2 in Praestgaard and Wellner 
(1993)). Finally, we recall a few well known properties of the symmetrized Poisson random 
variables. Let 7Ti[A], i = 1,2, be two independent Poisson random variables with mean A > 0. 



11 

Then TT
S
[\] := ix\ [A] — 7r2[A] is a symmetrized Poisson random variable with parameter A > 0. 

It is easily seen that 

00      \'ij+k °°      \2i-k 

<H{hr.W| = *}, = ,.-«[£ ^^ + £ ], t = 0,l,2,.... (3.13) 
j=0        • j=k 

We will use the following elementary results: 

Lemma 3.4 (i)    If 0 < A, < A2 < 1/2, then, for each t > 0, 

Q({k"[Ai]| > /}) < Q({k-[A2]| > *}). (3.14) 

(ii)    For each A, 0 < A < 1/2. and for any k = 0,1,2,... 

Q({W"[X]\ = k})< count ^j. (3.15) 

Suppose now that {T„ : n > 1} is a nonincreasiug sequence of classes of functions in 
L>(X;dP), i.e. L-i{X\dP) D T„ D •?■"„+1 for all 11 > 1. Let </' he a concave nondecreasing 
function from [0. +00) into [0. +00), such that for some c > 0 and for all x > 0, y > 0 

Hxy) < ciiixyuiy) (3.1C) 

and 
00 

7=1       " '' 

Lemma 3.5. Suppose that for all 7/ > 1 

1 

Then for all 77? < 77 

k 

E* max E\\ V(o\-     - Pn)\\rn < const 0(7/7.). (3.19) 

Proof: To estimate the expectation in (3.19), we need the following sequences of mutually 
independent random variables: 

(a) a Rademachcr sequence {sj : j > 1}; 

(b) for each k,l < k < m, a sequence {iTj[k/2n] : j> 1} of independent symmetrized 
Poisson random variables with parameters (k/2n). 

We assume that the Rademacher sequence, symmetrized Poisson random variables, and 

the bootstrapped sequence {Xnj : j > 1} are all independent of one another. More specif- 
ically, we define the Rademacher sequence on a separate probability space (Q£, Sff,7e); the 
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symmetrized Poisson sequences on another probability space (Q,n,T,n,jn).   Thus in what 
follows, our underlying probability space admits the form: 

(ft,i:,7)x(^S,7)x(fte,Se,7e)x(fiw,Sw,7ff). 

Then by the symmetrization lemma, we have a.s. (7) 

max£||£(AA.   . -P„)\\rn <2u*xEEe\\Y,£j(6:i     - Pn)\\rn (3.20) 
1 1 

which, by the Poissonization lemma, is 

<2rnaxE)r||^;7rf[^]ÄA-Jk. (3.21) 
i-\ 

And now by the contraction principle and Lemma 3.4(i), the expression (3.21) is 

<2£7r||^<[^]«.v,||^. (3.22) 
*—'       In 
1=1 

Since random variables 7rf are symmetric, we have 

n it 

EE*W Y <&-v,||*. < EE«Ee\\ Y k?[^-]M.v.-ll^ 
*■—'      In z—'        in 
i=\ 1 

n 

< E^^ll^^lTr^^HZ^Av.ll^, (3.23) 
'=1 >>i 

w here ZtJ = 1 if 7rf [^] = ±7, and Zl} - 0 otherwise. Then (3.23) is 

71 

= EEVES\\Y,J Y,Zii£i6*Wr» =EE«E£\\YJJ Y ^x.lk,- (3.24) 

where A„(j) := {i : |7ria)(^)| = j, 1 < * < 11}. Thus 

(3.24) < Y,J^EtE\\ J2 Zii>.\i\\rn- (3.25) 

Now the symmetrization lemma and condition (3.IS) imply that for A" := card(A„(j)) 

E€E\\   Y,   w^v,.||^<2£||   Y   (*x,-P)\\rn 

i€A„(j) i€A„(i) 

< 2£|| ^(o.v,. - P)||^,, < 20(A) = 2V'(card(An(j))). (3.26) 
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Therefore, by (3.26) and Jensen's inequality, (3.25) is 

< 2^2 jEv 0(card(A„(j))) < 2 £ H'(En card(An(j)) 

n 

= 2J2jin(E7rY,Zrj) = 2YJjHri,P(ZlJ = 1)) 
j>i i=i j>\ 

<2)    /(/'(const ??■(—- )J —),     by Lemma 3.4(a), 
^-^' 2??.     / 
>>• 

<2^j>(constm(^)>-1-l?), 

< const »/'(m),     by (3.1G) and (3.17). 

Remark: There could be another approach to the proof, based on Lemma 1.2.4 in Gine 
and Zinn (198G) and Lemma 4.4 in Praestgaard and Wellner (1993). But we preferred 
to present here a proof, based mostly on the properties of symmetrized Poisson random 
variables. 

The investigation of the classical bootstrap for the general empirical measures was ini- 
tiated by P. Gaenssler (1987). The following remarkable theorem is due to Gine and Zinn 
(1990). 

Theorem 3.1. The following two conditions are equivalent: 
(a) FeCLT(P); 
(b) There exists a Gaussian process G(f), f £ T', defined on the probability space 

(Q.S.7) such that G € Chu{T) 7-a.s. and 

<ly(yfi.(P„-P„),G)^0, 

in probability (7), as 11 —► 00. The process G is a P-Brownian bridge. 

Praestgaard and Wellner (1993) studied more general versions of the bootstrap, including 
the one in which the size of bootstrap sample m ^ n. 

We adopt the following terminology in the sequel. Given a sequence ?/„ of random vari- 
ables defined on the probability space (fi. Ü, 7) x (ft, £, 7) and a sequence a„ of positive real 
numbers, we write 

>/„ = °l>(«n) (3.27) 

iff, for each s > 0, 

as n —> 00. 
We write 

iff 

7 x 7({|'/«| > ea„}) -> 0, 

?/n = Op(an) 

lim lim sup 7 x 7({|?;„| > can}) = 0. 
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It is easy to check that r\n = 0p(a„) if and only if r\n = op(6n), for any sequence bn of 
positive numbers such that an = o(b„). 

An immediate consequence of Fubini's theorem is that rjn — op(an) iff, for each £ > 0, 

7({w:|T/n(-,w)|>£an})->0, (3.28) 

as n —+ oo in probability (7). 

The following theorem furnishes the main results of this section. 

Theorem 3.2.  Let {un} be a sequence of positive real numbers such that an = 0(n). 
Suppose that J- £ CLT{P) and let 

\N„ - n\ = op(a„). (3.29) 

Then 

||A,./v„ -P„\\r = op( — ). (3.30) 
n 

Proof: In view of (3.28), it is enough to show that, for each e > 0, 

.  1/2 

y{\\P«,Nn-Pny>^:—}^0 (3.31) 
n 

as n —> 00, in 7. 

Let P/vnAn denote the empirical measure based on |7V„ — n\ bootstrapped observations 
between 11 and Ar„. Then, we have 

A.,/v„ = ^-P„ + (1 - f)^v„A,, (3.32) 
•'•71 -'»1 

which implies 

\\Pn,N„  ~ Pn\W =  |1 -  TT"!       llAv^A« - A,||^ 
- ' n 

||A,,/V„  - A,||^ <  ^Z^(^)[||Al - P„||^ 

+ ||A,Aiv„-.P„IM- (3.33) 

From (3.29), it follows that as n —> 00,n/N„ = 1 + op(l), and \Nn — n\/n = op(an'~/n). 
Moreover the Gine-Zinn Theorem (Theorem 3.1) implies that for any sequence bn —> 00, we 
have 

||P„-P„||^ = o^(-^=) (3.34) 
v   H 

in probability (7). 
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Thus, under the condition a„ = O(n), we have 

J -TT\\
P

" ~ Pn\\r = o{ — )\\Pn -% = Op{ ). 
n       iV„ n n 

(3.35) 

Therefore it suffices to show that 

\Nn - n\\\PnANn - Pn\\r = o7(«y2) (3.36) 

in probability (7). 

Now let mn = [a„e'1]. Then 

7({\Nn-n\\\PNn±n-Pn\\r>ea)/2}) 

= 7({|Arn - n\\\P[Nn_n\ - Pn\\r > ea'J2}) 

\N-n\ 

I 

<7({|JV». -»I >»'„}) 
k 

+ 7({ma.x||J](^v     -P„)||^>faya}). (3.37) 
I 

By condition (3.29), we have 
7({|JV„-n|>;n.n)->0 (3-38) 

in probability (7). 

Now to estimate the last term in (3.37), we invoke the following version of Ottaviani's 
inequality: 

7({max||yjov      - P„)\\r > sa1/2 ' 

7({|IE'i""(^v     -Pn)\\r>eaJ2}) <   "■'  (3.39) 
" 1 - max7({||£X„    -Pn)\\r > ^f1})' 

k<m 

Thus it is enough to show that 

1/2 

7(111 V(/>v      -P„)\\T> - 
k<.i)i„ 
max7({||J>v   . - P„ )\\r > ^-}) - 0, (3.40) 

in probability (7). Clearly 

,'/2 

^n{\\Y^(6Xni.-Pn)y>^-f-}) 

0 k 

<-a-{l2m^E\\Y{bx   .-Pn)\\r. (3.4i; 
1 
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To estimate this last expectation, we apply Lemma 3.5 to the classes Tn :— T and ip(x) := 
const x1/2. Condition (3.18) holds by (3.11), and it follows from (3.41) and (3.19) that 

1/2 

Emax7({||X>A.   . -Pn)||^> ^-})<conste. 

Since e can be chosen arbitrarily small. (3.40) follows. 

This completes the proof of Theorem 3.2. 

Corollary 3.2.1: Let {«„ } be a sequence of positive numbers such that a„ = o(n). Suppose 
that T € CLT(P) and \N„ - n\ = Op{a„ ). Then 

1/2 

||A.wV„-A,||^ = 0,,( —)• n 

To prove the corollary, it is enough to apply Theorem 3.2 to any sequence {b„ } such that 
(i„ = (>{b„). 

Corollary 3.2.2: Suppose that T € CLT(P) and |Ar„ - n\ = op{n). Then 

\\P„,N„ -A,lk = op(»",/2)- 

Corollary 3.2.3:  Under the conditions of Corollary 3.2.2, 

\\N,l/2(Pn,Nn - Pn) - nll\Pn - Pn)\\r = op(l). 

Moreover, under the conditions of Theorem 3.2, 

ll^y2(A,,.-v„ -P,,)- »1/2(A, - Pn)\\r = o;)(\/^). 

and under the conditions of Corollary 3.2.1 

\\NlJ2(PnjW„ - p„) - „»/*(£, - pn)\\r = Opufc). 
V " 

Indeed, 

\\N!t
/2(Pn.Nn-Pn)-nl'2(Pn-Pn)\\r 

< liV//2 - nl/2\(\\Pn,Nn - P„\\r + ||P„ - Pn\\r) + nl'2\\Pn,Nn - Pny. 

Under the conditions of Corollary 3.2.2, 

\N]J2 - nl'2\ = n1/2^)1/2 - 1| = oJn'l2). 
n 



17 

Under the conditions of Theorem 3.2 we have 

\N1J2-nl'2\ = op(ann-l) = op( 

Theorem 3.1 implies that {nll2\\Pn — Pn\\j:} is stochastically bounded, and the result follows 
from Corollary 3.2.2 and Theorem 3.2. The last case is quite similar. 

Corollary 3.2.4- Under conditions of Corollary 3.2.2, 

rf7X7( \ZK,(Pn.Nn  - Pn), MPn - P„))  - 0, 

and there exists a P-Brownian bridge G/-»(/),   /  €  T defined on the probability space 

(Q,S,7) such that Gp £ C\„t{T) 7 - a.s. and 

r/7(v
/^(P„.;vn-P,1),Gp)^0 

in probability (-,). 

4. MATHEMATICAL JUSTIFICATION: CONVERGENCE RATES FOR THE 
SEQUENTIAL BOOTSTRAP 

In what follows we apply the results of Section 3 to the empirical measures based on 
sequential resampling bootstrap. We start with the following theorem summarizing the 
properties of the empirical measures in this case. 

Theorem 4.1. Suppose that T £ CLT{P) and let P„,Nn be the empirical measure based 
on a sequential bootstrap sample. Then 

\\P„.Nn-Pny = Op(n-^) 

and 

\\K/2(PN,.,n  -P,,)- »''HP,,  - Pn)\\r = Op( U~ ' '" ). 

Indeed, in this case we have, by (2.9), \Nn — 11] = Op{n{l2) and Corollaries 3.2.1 and 3.2.3 
imply the result. 

In particular, we have (see Corollary 3.2.4) 

rf7X7( Viv„(Pn>iVn - P„), \AI(P„ -pn)) 

and 
./7(\/vV„(P„.N„-P„),GV)^(), 

in probability (7), where G/•>(/), / £ T is a P-Brownian bridge, defined on the probability 

space (fi,S,7) and such that Gp £ Cbu{J-) 7 - a.s.. 
For simplicity, we consider in what follows only the case X = R1. In this case, it is natural 

to take T := {1^^^ : t £ P1}, so that general empirical measures considered above turn 
out to be classical empirical distribution functions. Denote 

F( t) := P((-oo,t]) =  f   I{-oo,t]dP 
JR1 
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and 

Fn(t) := Pn((-oo,*]) =  /   /(-oo.tidPn 

Fn,N{t) •= Pn,N{{-00,t}) -    /      I^^^dPn^. 
JR.1 

We also use the abbreviation F„ := Fn<n. 
In what follows || ■ ||oo denotes the sup-norm of a function from an interval J C R1 into 

R1 (in particular, there could be J = Rl). 
Since, by the Kolmogorov-Donsker theorem, we have T € CLT(P) for all Borel proba- 

bility measures P on Ri (where T = {/(-^^j : tf € P1}), we have the following statement. 
Theorem 4.2. For any distribution function F on i?1, 

\\Fn<Nn-Fn\\oo = 0p(n-:i/A) 

and 
||iVy2(F„,v„ - F„) - nl'2(F„ - Felloe = (),{„-'"). 

In the case of uniform distribution F on [0,1], we get as a trivial corollary that the 
sequence of stochastic processes 

{N^(Fn,Nn(t)-Fn(t)):tG[0,l]}nkl 

converges weakly (say, in the space f°°([0,1]) or Z)[0,1]) to the standard Brownian bridge 
process 

B(t) := w(t) - t.w(l), te[QA], 

w being the standard Wiener process. More generally, if F is a continuous distribution 
function in Rl, then the limit is the process (BoF){t) = B(F(t)), t G Rl. These facts easily 
imply justification of the sequential resampling bootstrap for a variety of statistics Bn, which 
can be represented as 0„ = T(F„) with a compactly (Hadamard) differentiable functional 
T. More precisely, T is a functional (or, more generally, an operator with values in a linear 
normed space) G i—»• T(G'), defined on a set Q of distribution functions G. T is supposed 
to be compactly differential)^; at F tangentially to the space of all uniformly bounded and 
uniformly continuos functions (see, e.g., Gill (1989)). For such statistics, we have 

T(Fn,Nn)-T(Fn) = op(n-1'2), 

proving the first order asymptotic correctness of the sequential resampling approach. These 
observations can be applied, for instance, to the operator G i—► G'_1, defined by 

<?-'(*) :=inf{;»•€#' : G(x) > /}, 

and taking a distribution function to its quantile function (see, e.g., Fernholz (1983) or Gill 
(1989) for compact differentiability of such operators; see, also, Koltchinskii (1995) for the 
extensions to the multivariate case). Specifically, if F is continuously differentiable at a 
point x G R1 with F'(x) > 0, then 

\F-lNn(t)-F-l(t)\=op(n-^2), (4.1) 
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where t = F{x). In fact, we obtain below a bound for quantiles, sharper than (4.1) (see 
Theorem 4.4). 

Another interesting application of Theorem 4.1 is related to a recent work of Dudley 
(1992). Namely, we show that in Theorem 4.2 the sup-norm can be replaced by a stronger 
one, the so called p-variation norm. For a function / from an interval .7 C Rl into Rl and 
for p > 0, define the p-variation of / as 

m 

vp(f) := sup j Y^ Ifixi) ~ /(*.•-1 )|p : *o < *i < • • • < xm e J, x0 € J, m = 1,2,... J. 

Let 
Wp:=Wp(J):={f:vp(f)<+oo}. 

We introduce the following norm on Wv for p > 1 (see Dudley (1992)): 

ll/ll[„]:=ll/l|oo + t^(/). 

Theorem 4.3. For any distribution function F on i?1 and for all p > 2 

||F„,v„ -Fn\\[p]=Op(n-*'A) 

and 
\\Ny2(F„,Nn -F„)- nl'2(Fn - Fn)\\{l>] = Op(n~xlA). 

Proof: Assume that .7 = 7?', take q < 2 and consider 

■7V={/:|I/II[,]<1}. 

By Theorem 2.1 of Dudley (1992). F,, € CLT(P) for any Borel pro1)al)ility measure P on 
7?.'. On the other hand. L.C. Young's duality inequalities for p-variation norms (see Dudley 
(1992), Proposition 3.7) imply that for any p > \ and q > 1 with p~{ + </-1 =1 we have 

||7
7
'„,A-„ - F,,!!^] < const ||P„jv„ - Ai 11^-,, 

and Theorem 4.1 implies the result. 
Finally, we improve bound (4.1) for empirical quantiles. 

Theorem 4.4. Suppose that F is an absolutely continuous distribution function in Rl. 
Let 

.4 := sup{.r : F(x) = ()}, D := inf{.r : F(x) = 1}. 

Suppose the density of F is a stricly positive continuous function in (-4,73). Then for all 

< 6(0,1) 
\F-lNa(t)-F-l(t)\ = 0,(71-^*). (4.2) 

For any closed interval J C (0,1) 

sup|F-;Vn(t) -F~l(t)\ = Opfn-^vOogn). (4.3) 
t<EJ 
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If, moreover, A > —oo,  B < +00 and the density of F is a strictly positive continuous 
function on [A,B], then (4.3) holds with .7 = [0,1]. 

In order to prove this theorem we need several lemmas. The first one gives an inequality 
for quantiles. It requires some notations. Given h : [0,1] 1—> Rl, denote 

ujh(s;6) := sup{|/*(«)- Hv)\ ■   |" --s| < 6,\v - s\ < f>, u,v e [0.1]}, 

Uh.(6) :=   sup üJ/I(.S;ö), 6 > 0. 
«€[0,1] 

Given a distribution function G, we set 

o(G): =   sup   |G(G"'(/))-/|. 
'€(0,1) 

Lemma 4.1.  Suppose» that F is a. uniform distribution function on [0. 1]. Then, for all 
distribution functions G and H on [0,1] and for all / £ [0,1], we have 

\G-l(t)-H-l(t.)\ 

< wr;-/.'(*; ||G - F|U + ||ff - F|U + A(G) + o(/f)) 

+ \\H-G\\00 +6(G) + 6(H). (4.4) 

Proof: First, note that for all / e [0,1] 

\G-l(t)-*\ < |G-'(/)-G(G-'(/))| + |G(G-*(*))-/| < IIG-FHoc+^G). 

Similarlv, 
l^-'tO-i^-'tO! < ||fi'-F||00 + A(JH-). 

It follows that 

|G-'(/) - H-l(t)\ < \\G - F|U + \\H - Flu + o(G) + 6(H). (4.5) 

On the other hand, 

\G-l(t)-H-l(t)\ < \(G-F)(G-l(t))-(H-F)(H-l(t))\ + \G(G-l(t))-H(H-l(t.))\. (4.6) 

Since, by (4.5), 

\(G - F^G-'it)) - (H - F)(H-l(t))\ 

< \(G - F)(G-' (<)) - (G - F)(H-l{t))\ + \(G - F)(H~l(t)) -(H- F)(H-l(t))\ 

< w(t; ||G - F||oo + \\H - F|U + 6(G) + 6(F)) + \\G - # |U 

and 

\G(G~l(t)) - H(H~l(t))\ < \G(G~l(t)) -t\ + \t- H(H~l(t))\ < 6(G) + 6(H), 
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(4.6) implies (4.4), which completes the proof. 

Next we need the following bounds for the continuity modulus of the standard empirical 
process 

Ut):=nl^(Fn(t)-t), <€[0,1], 

based on a sample from the uniform distribution on [0,1]. They seem to be known, although 
we have not found the exact reference. See Stute (1982) and Shorack and Wellner (1986) 
for some other results on oscillatory behaviour of empirical processes. We sketch the proof 
here for completncss. 

Lemma 4.2. For any C > 0 and for all t £ [0,1] 

Eu><n{t\Cn-1'2) = 0{rr1'*). (4.7) 

Moreover. 

Eu<n(Cn-1^) = 0(irx'-x yfi^Ji). (4.8) 

Proof: By the Komlos-Major-Tusnady theorem (see. e.g. Shorack and Wellner(19SG)). 
there exists a sequence {B„}„>\ of Brownian bridges on [0,1] and constants D > 0. A' > 
0,6 > 0 such that 

7{A„  > «-'/'2(;i: + Dlog»)}  < He'6*,   X > 0, 

where A„ := ||(,"n — Z?n||oo- It follows that 

£max(n1/2A„ - Dlogn,0) < -^-, 
u 

and since 

we have 

Note that 

anc 

//1/2A„ < Dlog» + max(nl/2A„ - Z? log ?/..()) 

EA„ =0(n-^2logn). 

^JUCn-^2) < ^Bn(tCn-^2) + 2An . 

^•n(C»",/2)<u;HII(C»-,/'2) + 2A„. 

Therefore it's enough to show that 

Eu>B(t;Cn-1'2) = 0{n-l'A) 

and 

EuB(Cn-^2) = O(?z-1/4v/log^), 

which follow from the representation B(t) — to(t) — tw(l) and well known properties of the 
Wiener process. 
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Proof of Theorem 4.4: Without loss of generality, we can and do assume that F is 
uniform on [0,1] (in the general case, the transformation X{ i—> F(X{) should be used to 
reduce the problem to the uniform one). Then we use Lemma 4.1 to get the following bound: 

< uFn_F(t; \\Fn.Nn - F||oo + \\Fn - F||oo + 6(Fn,Nn) + 6{Fn)) 

+ \\Fn.Nn-Fn\\00 + 6(F„,Nn) + S(Fn). (4.9) 

Note that, by usual limit theorems for empirical processes and their bootstrapped versions. 

||F„ - F|U < \\F„ - F^loo + \\F„ - FHoo = Op(n-'/2). (4.10) 

By Theorem 4.2. 

\\F„.N„ -Fn\\oo = 0p(n-^4). (4.11) 

It follows that we also have 

\\F,l,Nn-F\\oo = 0p(iri'2). (4.12) 

Now we are going to show that 

6(Fn) = Op(n~l logn) (4.13) 

and 
6(F„.Nn) = Op(n-x logn). (4.14) 

Indeed, fi(F„) is less than or equal to the largest jump of F„, which is equal to 

(«) maxi<j<„ v- 

where 

We have 

n 

r ==E^.V....X,,^=»■••-»■ 

£exp{^"»} = II £™PU,.v„.« = .v,,) = (1 + V'" " ' " 
k=i 

Therefore, for C > 1 

-yl max v"   > Clogn) 

< exp{-Clogn} ?7. Fexpli/J70} < ee-ln~c+1 = o(l), 

7-a.e. and (4.13) follows. 
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The proof of (4.14) is quite similar. In this case we set 

*.—I 

and get 

max i 
ft F.. ,v  ) <   

N, 

(n) 
maxK7-<H ^,- 

6(Fn.Nn)<  !^w   J    . (4.15) 

We have 

7{max v\"} > Clogn}<j{ max u)n] > Clogn} + 7{Nn > 2n}, (4.16) 

where 

^"'-EW^Y,}- i = i "• 
A-=l 

Since 
£cxp{,><",}<r2«-|), 

we easily obtain 

7{ max i>JH)>Clogn}=0(l), (4.17) 

and (4.14) follows from (4.15)-(4.17) and (2.9). 
By (4.9)-(4.14), in order to prove (4.2) it remains to show that for all / G (0.1) 

^r„_/,«;Cu-,/2) = 0;,(»-V4) (4.18) 

and in order to prove (4.3) we have to show that 

-'/W«:'»-'/'2) = 07,(»-V'00^). (4.19) 

We show here only (4.19), since the proof of (4.18) is quite similar. Note that 

where 

Tn ■= {/[o.O - /[..,,] : |< - -s| < 2Cn-'l\ s,t G [0,1]}. 

It follows from Lemma 4.2 that 

71 

E\\ £(**, - P)\\rn = nE\\Pn - Pyn = nWEutJCn-1'2) = 0(nl'*y/]^). 
1 

Now we use Lemma 3.5 with m = n and with function 

■i/ix) := const xl/4 ^\og{x + e2) 
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(which satisfies all conditions required in Lemma 3.5), to get 

n 

nEE \\Pn - Pnyn = || Y,{6Xn.i ~ Pn)^ - C°nst ^ 
l 

which implies 

EELOF    F (C'n"1/2) = EE \\Pn - Pn\\rn = Oin-Wyfiogn] 

Combining this bound with 

EEu>t-n-F(Cn-1'2) = 0(77.-3/4v^gn) 

(which follows from (4.8)), we get 

EE uF    F{Cn-x'2) < EE «..,.    ,. (Cn-{'2) + EE u>Fn-F(Cn-1'2) = Ofr-*'* ,fiog7i). 

This implies (4.19), completing the proof. 

It worth noting that the rate u~:!/4 (up to a logarithmic factor) in Theorem 4.4 is exactly 
the same as in the remarkable Bahadur-Kiefer representation for empirical quantiles (see, 

e.g., Shorack and Wellner (1986)). 

5. CONCLUDING REMARKS 

Having seen in the preceding investigation that the "distance11 between the sequential 
bootstrap and the common bootstrap of size n is at most of order n~AlA (up to a logarith- 
mic factor), it is now natural to ask about the second-order correctness of the sequential 
bootstrap as compared to the common bootstrap. Our preliminary investigation along the 
lines of the Hall-Mammon paper (1994) seems to indicate that the second-order correctness 
of the sequential bootstrap does indeed go through. Further work in this direction is in 
progress and will be published later. 
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